
Nieuwe mogelijkheden met gerecycleerde granulaten

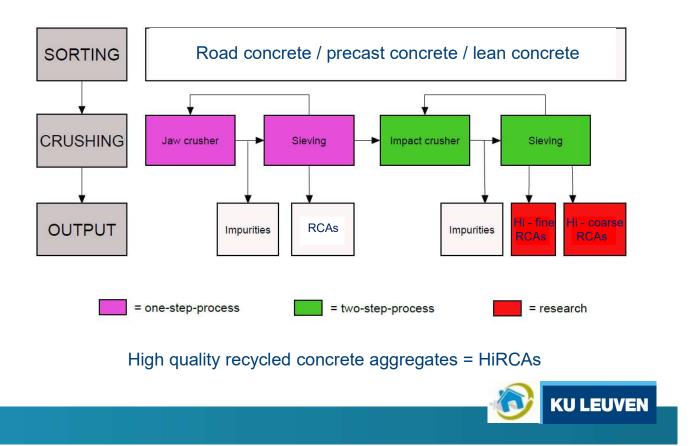
Prof. Dr.-Ing.Jiabin Li Ing. Zeger Sierens Ir. Brecht Vandevyvere

12/03/2019

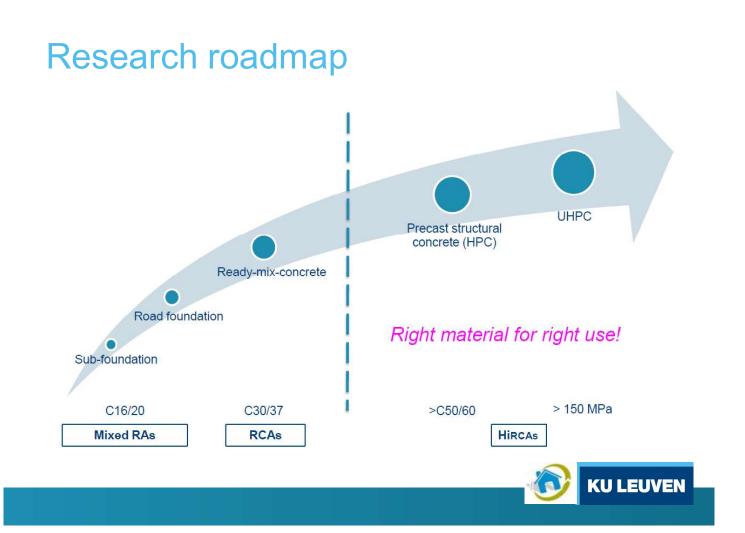
Background & motivation

Background & motivation

Background & motivation


- Recycling of concrete into aggregates \neq new ideas
- Use of RCAs in concrete \neq new research

Background & motivation



Use of HiRCAs in structural concrete

• New possibilities with HiRCAs

Use of HiRCAs in structural concrete

- Research line: use of HiRCAs for structural purpose
 - Precast structural concrete
 - Fibre reinforced concrete (FRC)
 - High- & Ultra high performace concrete (HPC&UHPC)

Z. Sierens

B. Vandevyvere

X.Chen

S.Yuan

F.Yang

J.Cai

Use of HiRCAs in structural concrete

Ongoing PhD/Post-doc projects:

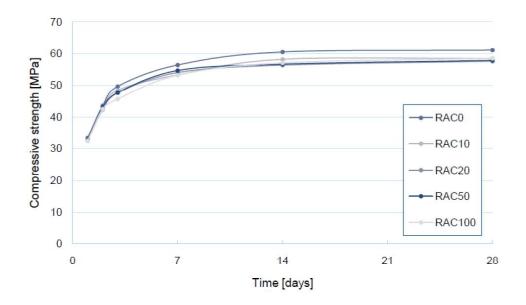
- Use of RCAs in precast non-prestressed and prestressed structural elements (Z. Sierens)
- Structural use of concrete with RCAs Fibre reinforced concrete with RCAs (B. Vandevyvere)
- High performance concrete (HPC) with RCAs for precast industry (X. Chen)
- Constitutive modelling and finite element analysis of concrete with RCAs (F. Yang)
- Ultra high performance concrete (UHPC) with RCAs (S. Yuan)
- Muliscale modelling of structural concrete with RCAs (J. Cai)

Ongoing research

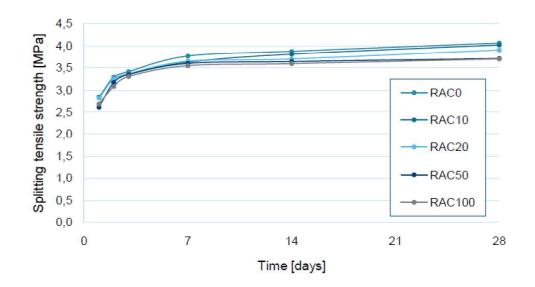
Use of RCAs in precast structural concrete

- Research content
 - $_{\odot}$ Mechanical properties of concrete with RCAs at early ages
 - o Creep and shrinkage of concrete with RCAs
 - o Bond slip behaviour of reinforcement / prestressing strand
 - $_{\odot}$ Camber of prestressed beams made of concrete with RCAs

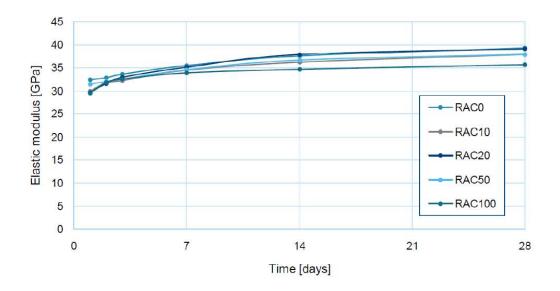
Use of RCAs in precast structural concrete

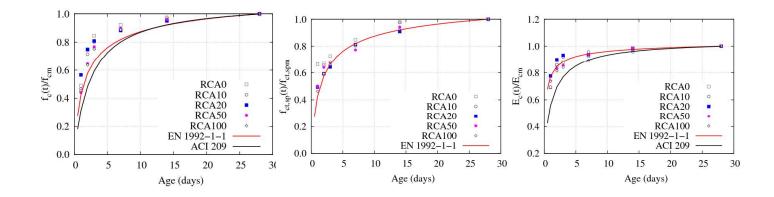


RAC0	RAC10	RAC20	RAC50	RAC100
400	400	400	400	400
0.48	0.48	0.48	0.48	0.48
780	780	780	780	780
196	196	196	196	196
785	706	628	392	0
0	74	148	371	742
1.3	1.3	1.3	1.3	1.3
7	10	13	22	38
210	197	195	192	190
	400 0.48 780 196 785 0 1.3 7	400 400 0.48 0.48 780 780 196 196 785 706 0 74 1.3 1.3 7 10	400 400 400 400 400 400 0.48 0.48 0.48 780 780 780 196 196 196 785 706 628 0 74 148 1.3 1.3 1.3 7 10 13	400 400 400 400 0.48 0.48 0.48 0.48 780 780 780 780 196 196 196 196 785 706 628 392 0 74 148 371 1.3 1.3 1.3 22


Ongoing research

Project 1: Use of RCAs in precast structural concrete



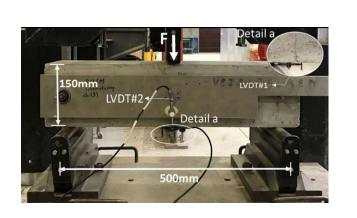

Ongoing research

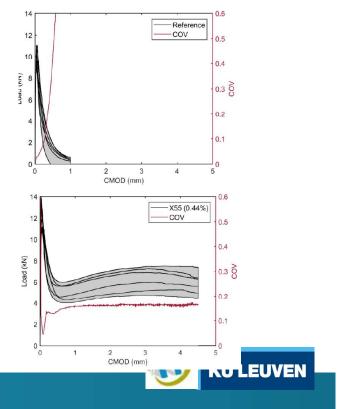
Project 1: Use of RCAs in precast structural concrete

Ongoing research

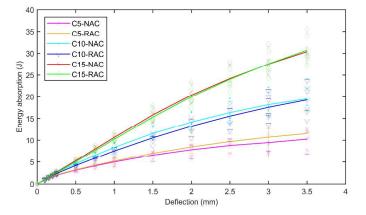
Project 2: Structural use of RCAs - fibre reinforced concrete with RCAs

- Research content
 - \circ Influence of various types of fibres on concrete with RCAs
 - o Modelling of fibre reinforced concrete with RCAs
 - $_{\odot}$ Design of fibre reinforced concrete with RCAs

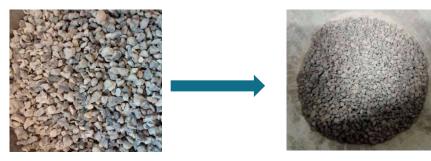




Project 2: Structural use of RCAs - fibre reinforced concrete with RCAs



Ongoing research


Project 2: Structural use of RCAs - fibre reinforced concrete with RCAs

Project 3: UHPC with HiRCAs

Basalt (4-8mm)

Ongoing research

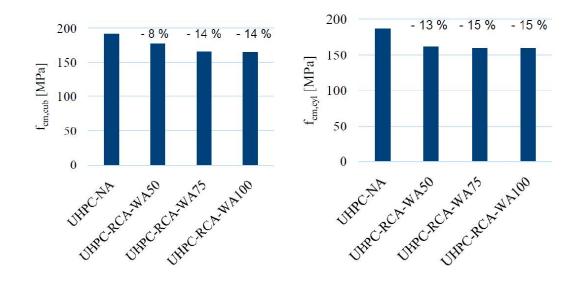
RCA (4-8mm)

Project 3: UHPC with HiRCAs

- UHPC-NA-8mm-0,5%
 - $_{\circ}$ 12,3 %_{V/V} basalt 4-8mm
 - \circ 0,5 % fibers
- UHPC-RCA-8mm-0,5%-WA0
 - \circ 12,3 %_{V/V} RCA 4-8mm
 - \circ 0,5 % fibers

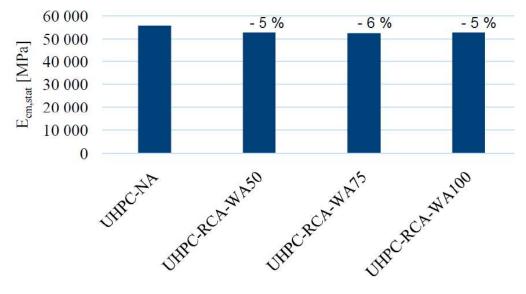
- UHPC-RCA-8mm-0,5%-WA50
 - $_{\circ}$ ~ 12,3 $\%_{V/V}$ RCA 4-8mm ~
 - \circ 0,5% fibers
- UHPC-RCA-8mm-0,5%-WA100
 - $_{\circ}$ ~ 12,3 $\%_{V/V}$ RCA 4-8mm ~
 - $_{\circ}$ 0,5 % fibers

Project 3: UHPC with HiRCAs


Ongoing research

Project 3: UHPC with HiRCAs

Table 10 - Workability of concrete mixtures				
Mixture	t ₂₀₀ [s]	d _m [mm]		
UHPC-NA	16	257		
UHPC-RCA-WA50	15	249		
UHPC-RCA-WA75	9	278		
UHPC-RCA-WA100	8	275		


Project 3: UHPC with HiRCAs

Ongoing research

Project 3: UHPC with HiRCAs

Mixture	Flexural tensile strength Flexural tensile strength [MPa]	Mean value [MPa]	
UHPC-NA beam 1	12.20		
UHPC-NA beam 2	11.61	11.48	
UHPC-NA beam 3	10.65		
UHPC-RCA-WA50 beam 1	9.70	9.99	
UHPC-RCA-WA50 beam 2	10.28		

KU LEUVEN

Short CV

- 02/1978 Born in Hebei, China
- 07/2004 Master in Civil Engineering, Tongji Univ., Shanghai, China
- 04/2011 PhD (Dr.-Ing) in Civil Engineering, Univ. of Leipzig, Germany

Senior researcher, TU Graz, Austria

Research assistant, Univ. of Leipzig, Germany

- 2005 2009
- 2010 2016
- 2016 2016 Associate Professor, Oslo Univ. Colle, Norway
- 10/2016 Assistant Professor in Civil Engineering, KU Leuven
- 06/2017 Holder, Han & Li Chair in Smart & Sustainable
 Infrastructure, KU Leuven
- 07/2018 Holder, Lvnong Chair in Construction Waste Recycling KU Leuven

https://scholar.google.com/citations?user=mE2aKSwAAAAJ&hl=en

Acknowledgements

Thank you very much for your kind attention!

jiabin.li@kuleuven.be

KU LEUVEN